

A view of the future of HEP Computing

An incomplete view of the future of HEP Computing

Some things I know for the future of HEP Computing

Some things like to I know for the future of HEP Computing

Disclaimer

Although we are here in the Root workshop I don't present topics which are necessarily to be answered by Root in its current implementation or any derivative or future development in Root. I simply put down what worries me when I think about computing for future HEP experiments.

(Speaking for myself and not for US, US DOE, FNAL nor URA.) (Product, trade, or service marks herein belong to their respective owners.)

Fermilab HEP Program

The CERN Scientific Programme

HEP computing: The next 5 years...(1)

- Data analysis for <u>completed experiments</u> continues
 - Challenges:
 - No major change to analysis model, code or infrastructure
 - Operation, continuity, maintaining expertise and effort
- Data collection and analysis for <u>ongoing experiments</u>
 - Challenges:
 - Data volume, compute resources, software organization
 - Operation, continuity, maintaining expertise and effort

HEP computing: The next 5 years...(2)

Root 2001

Starting experiments:

- Challenges:
 - Completion and verification of data and analysis model,
 - Data volume, compute resources, software organization, \$\$'s
 - Operation, continuity, maintaining expertise and effort

Experiments in preparation:

- Challenges:
 - Definition and implementation of data and analysis model,
 - data volume, compute resources, software organization, \$\$'s
 - continuity, getting and maintaining expertise and effort
 - Build for change: applications, data models...
 - Build compute models which are adaptable to different local environments

Run 2 Data Volumes

Root2001

Category	Parameter	D0	CDF
DAQ rates	Peak rate	53 Hz	75 Hz
	Avg. evt. Size	250 KB	250 KB
	Level 2 output	1000 Hz	300 Hz
	maximum log rate	Scalable	80 BM/s
Data storage	# of events	600M/year	900 M/year
	RAW data	150 TB/year	250 TB/year
	Reconstructed data	75 TB/year	135 TB/year

- First Run 2b costs estimates based on scaling arguments
 - Use predicted luminosity profile
 - Assume technology advance (Moore's law)
 - CPU and data storage requirements both scale with data volume stored
- Data volume depends on physics selection in trigger
 - ◆ Can vary between 1 8 PB (Run 2a: 1 PB) per experiment
- Have to start preparation by 2002/2003

How Much Data is Involved?

Root2001

HEP computing: The next 5 years...(3)

- Challenges in big collaborations
 - Long and difficult planning process
 - More formal procedure required to commit resources
 - Long lifetime, need flexible solutions which allow for change
 - Any state of experiment longer than typical PhD or postdoc time
 - Need for professional IT participation and support
- Challenges in smaller collaborations
 - Limited in resources
 - Adapt and implement available solutions ("b-b-s")

CMS Computing Challenges

- Experiment in preparation at CERN/Switzerland
- ◆ Strong US participation: ~20%
- ◆ Startup: by 2005/2006, will run for 15+ years

Major challenges associated with:

Communication and collaboration at a distance
Distributed computing resources
Remote software development and physics analysis
R&D: New Forms of Distributed Systems

Role of computer networking (1)

- State-of-the-art computer <u>networking</u> enables large international collaborations
 - needed for all aspects of collaborative work
 - to write the proposal,
 - produce and agree on the designs of the components and systems,
 - collaborate on overall planning and integration of the detector, confer on all aspects of the device, including the final physics results, and
 - provide information to collaborators and to the physics community and general public
 - Data from the experiment lives more-and-more on the network
 - All levels: raw, dst, aod, ntuple, draft-paper, paper

Role of computer networking (2)

- HEP developed its own national network in the early 1980s.
- National research network backbones generally provide adequate support to HEP and other sciences.
- Specific network connections are used where HEP has found it necessary to support special capabilities that could not be supplied efficiently or capably enough through more general networks.
 - US-CERN, several HEP links in Europe...
- Dedicated HEP links are needed in special cases because
 - HEP requirements can be large and can overwhelm those of researchers in other fields
 - because regional networks do not give top priority to interregional connections

Data analysis in international collaborations: past

- In the past analysis was centered at the experimental site
 - a few major external centers were used.
 - Up the mid 90s bulk data were transferred by shipping tapes, networks were used for programs and conditions data.
 - External analysis centers served the local/national users only.
 - Often staff (and equipment) from the external center being placed at the experimental site to ensure the flow of tapes.
 - The external analysis often was significantly disconnected from the collaboration mainstream.

Data analysis in international collaborations: truly distributed

Why?

- For one experiment looking ahead for a few years only centralized resources may be most cost effective,
- national and local interests leads to massive national and local investments
- For BaBar:
 - The total annual value of foreign centers to the US-based program is greatly in excess of the estimated cost to the US of creating the required high-speed paths from SLAC to the landing points of lines WAN funded by foreign collaborators
- Future world-scale experimental programs must be planned with explicit support for a collaborative environment that allows many nations to be full participants in the challenges of data analysis.

Distributed computing:

Networking is an expensive resource, should be minimized

- Pre-emptive transfers can be used to improve responsiveness at the cost of some extra network traffic.
- Multi-tiered architecture must become more general and flexible
 - to accommodate the very large uncertainties in the relative costs of CPU, storage and networking
 - To enable physicists to work effectively in the face of data having unprecedented volume and complexity
- Aim for transparency and location independence of data access
 - the need for individual physicists to understand and manipulate all the underlying transport and task-management systems would be too complex

Distributed Computing

6/13/01: The New Hork Times

"It turns out that distributed computing is really hard," said Eric Schmidt, the **chairman of Google**, the Internet search engine company.

"It's much harder than it looks. It has to work across different networks with different kinds of security, or otherwise it ends up being a single-vendor solution, which is not what the industry wants."

Many more technical questions to answer (1)

Operating system:

- UNIX seems to be favored for data handling and analysis,
- LINUX is most cost effective
- Mainframe vs. commodity computing:
 - commodity computing can provide many solutions
 - Only affordable solution for future requirements
 - How to operate several thousand nodes?
 - How to write applications to benefit from several thousand nodes?
- Data access and formats:
 - Metadata databases, event storage

Many more technical questions to answer (2)

- Commercial vs. custom software, public domain
- Programming languages:
 - Compiled languages for CPU intensive parts
 - Scripting languages provide excellent frameworks
- How to handle and control big numbers in big detectors:
 - Number of channels, modules improves (several millions of channels, hundreds of modules
 - Need new automatic tools to calibrate, monitor and align channels

Some more thoughts

Root2001

- Computing for HEP experiments is costly
 - In \$\$'s, people and time
 - Need R&D, prototyping and test-beds to develop solutions and validate choices
- Improving the engineering aspect of computing for HEP experiments is essential
 - Treat computing and software as a project (see <u>www.pmi.org</u>):
 - Project lifecycles, milestones, resource estimates, reviews
- Documenting conditions and work performed is essential for success
 - Track detector building for 20 years
 - Log data taking and processing conditions
 - Analysis steps, algorithms, cuts

As transparent and automatic as possible